Foundation for Success

Unified International
Mathematics Olympiad

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD

```
CLASS - 10
```

KEY

1	2	3	4	5	6	7	8	9	10
C	B	C	A	D	A	C	D	B	A
11	12	13	14	15	16	17	18	19	20
C	D	C	C	A	D	C	C	C	B
21	22	23	24	25	26	27	28	29	30
A	D	B	A	A	A	B	A	C	D
31	32	33	34	35	36	37	38	39	40
$\mathrm{~A}, \mathrm{D}$	B, C	$\mathrm{A}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{D}$	A, C	C	D	D	D	D
41	42	43	44	45	46	47	48	49	50
B	D	C	D	C	C	D	D	B	A

MATHEMATICS - 1

1. (C) Given $b^{2}=4 a c$

$$
\therefore \quad=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm \sqrt{b^{2}-b^{2}}}{2 a}=\frac{-b}{2 a}
$$

2. (B) Given $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ are in AP

$$
\begin{array}{ll}
\therefore & \angle \mathrm{B}=\frac{\angle \mathrm{A}+\angle \mathrm{C}}{2} \Rightarrow \angle \mathrm{~A}+\angle \mathrm{C}=2 \angle \mathrm{~B} \\
& \mathrm{But} \angle \mathrm{~A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\
\therefore & 2 \angle \mathrm{~B}+\angle \mathrm{B}=180^{\circ} \\
& 3 \angle \mathrm{~B}=180^{\circ} \Rightarrow \angle \mathrm{B}=\frac{180^{\circ}}{3}=60^{\circ}
\end{array}
$$

3. (C) $\triangle A M P \sim \Delta A B C \quad[\because A$ A. A. similarity]
$\therefore \quad \frac{A M}{A B}=\frac{M P}{B C}$
$\Rightarrow \quad \frac{A M K}{3 A M}=\frac{M P}{12 \mathrm{~cm}}$
$\therefore \quad M P=4 \mathrm{~cm}$
Similarly we can prove
$\triangle A N Q \sim \triangle A B C$

$$
\therefore \quad \frac{A N}{A B}=\frac{N Q}{B C}
$$

$$
\begin{aligned}
& \frac{2 A M}{3 A M}=\frac{N Q}{12 \mathrm{~cm}} \\
\therefore & \\
& N Q=\frac{2 \times 12 \mathrm{~cm}}{3}=8 \mathrm{~cm} \\
\therefore & M P+N Q=4 \mathrm{~cm}+8 \mathrm{~cm}=12 \mathrm{~cm}
\end{aligned}
$$

4. (A) Given $\tan 6 \theta=\cot 2 \theta=\tan \left(90^{\circ}-2 \theta\right)$
$\therefore \tan 6 \theta=90^{\circ}-2 \theta$
$\therefore \quad 6 \theta=90^{\circ}-2 \theta$
$\therefore \quad 8 \theta=90^{\circ}$
$\therefore \quad 4 \theta=45^{\circ}$
$\therefore \quad \sec 4 \theta=\sec 45^{\circ}=\sqrt{2}$
5. (D)

Construction: $A D \perp B C$
In $\triangle \mathrm{ABD}, \angle \mathrm{D}=90$
$\therefore \quad \sin 45^{\circ}=\frac{A D}{A B}$
$\frac{1}{\sqrt{2}}=\frac{A D}{10 \sqrt{2} \mathrm{~cm}}$
$A D=10 \mathrm{~cm}$
In $\triangle A B D, \angle D=90^{\circ} \& \angle B=45^{\circ} \Rightarrow \angle B A D=45^{\circ}$
$\therefore \quad B D=A D=10 \mathrm{~cm}$
$\therefore \quad D C=B C-B D=(10 \sqrt{3}+10-10) \mathrm{cm}=$ $10 \sqrt{3} \mathrm{~cm}$

In $\triangle A D C, \angle D=90^{\circ} \Rightarrow=A C^{2}=A D^{2}+D C^{2}$
$=(10 \mathrm{~cm})^{2}+(10 \sqrt{3} \mathrm{~cm})^{2}$
$=100 \mathrm{~cm}^{2}+300 \mathrm{~cm}^{2}$
$\mathrm{AC}=\sqrt{400 \mathrm{~cm}^{2}}$
$=20 \mathrm{~cm}$
06. (A) Given $\mathrm{A}(-1,-1) \mathrm{B}(2,3)$ and $\mathrm{C}(8,11)$
$\therefore \quad$ Area of $A B C=$

$$
\begin{aligned}
& \frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& =\frac{1}{2}|-1(3-11)+2(11+1)+8(-1-3)| \\
& =\frac{1}{2}|8+24-32| \\
& =\frac{1}{2}|32-32| \\
& =\frac{1}{2} \times 0 \\
& =0
\end{aligned}
$$

7. (C)

$$
\begin{aligned}
& x-1\left|\begin{array}{l}
x^{\beta}-5 x^{2}+3 x+1 \\
x^{3}-x^{2} \\
(-)(+)
\end{array}\right| \begin{array}{c}
-4 x^{2}+3 x+1 \\
-4 x^{2}+4 x \\
(+)(-)
\end{array}\left|\begin{array}{l}
-x+1 \\
-x+1 \\
(+)(-)
\end{array}\right| \\
& \therefore \quad x^{2}-4 x-1=0 \\
& \begin{array}{l}
a=1 \quad b=-4 \quad c=-1 \\
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-4) \pm \sqrt{16-(4 \times 1 \times-1)}}{2 \times 1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 \pm \sqrt{20}}{2} \\
& =\frac{4 \pm 2 \sqrt{5}}{2} \\
& =(2 \pm \sqrt{5})
\end{aligned}
$$

8. (D) Given $4 x^{2}+0 x-1=0$

$$
\begin{aligned}
& \therefore \quad a=4 \quad b=0 \quad \& \quad c=-1 \\
& \therefore \quad a+b=-\frac{b}{a}=-\frac{0}{4}=0
\end{aligned}
$$

9. (B) Let $\frac{1}{\sqrt{x}}-\mathrm{a} \& \frac{1}{\sqrt{y}}=\mathrm{b}$

$$
\therefore \quad 2 a+3 b=\frac{13}{6}
$$

$$
\Rightarrow \quad 12 a+18 b=13
$$

$$
4 a-9 b=\frac{-19}{6}
$$

$$
\begin{equation*}
\Rightarrow \quad 24 a-54 b=-19 \tag{2}
\end{equation*}
$$

\qquad
eq. (1) $\times 2 \Rightarrow \quad \begin{aligned} & 24 \\ & 24 a+36 b=26 \\ & 24 a-54 b=-19\end{aligned}$
11. (C) Given 1001, 1005, \qquad 9997 are the required numbers which are in Arithmetic progression.
$\therefore \quad a=1001, d=4 \& a_{n}=9997$
$\therefore \quad a_{n}=a+(n-1) d=9997$
$1001+(n-1) 4=9997$
$(n-1) 4=9997-1001$
$n-1=\frac{8996}{4}=2249$
$n=2249+1=2250$
$s_{n}=\frac{n}{2}\left[a+a_{n}\right]$
$=\frac{2250}{2}[1001+9997]$
$=\frac{2250}{2} \times 10998^{5499}$
$=1,23,72,750$
12. (D) Given $\mathrm{a}_{7}=31 \& \mathrm{a}_{1}=-5$

$$
\begin{array}{ll}
\therefore \quad & a+6 d=31 \\
& -5+6 d=31 \\
& 6 d=36
\end{array}
$$

$d=6$
$x_{1}=a+d=-5+6=1$,
$x_{2}=x_{1}+\mathrm{d}$
$x_{2}=1+6=7$
$x_{3}=x_{2}+d$
$x_{3}=7+6=13$
$\therefore \quad x_{4}=x_{3}+\mathrm{d}=13+6=19$
$x_{5}=x_{4}+\mathrm{d}=19+6=25$
$\therefore \quad x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=1+7+13+19+25$
$=65$
13. (C) A remainder is always less than devisor but it can be zero also
$\therefore \quad a=b q+r$
where $0 \leq r<b$
$\therefore \quad$ Option (C) is correct
14. (C) Given (-1) is the zero of $\mathrm{p}(x)=x^{3}+\mathrm{a} x^{2}+$ $b x+c$
$p(-1)=(-1)^{3}+a(-1)^{2}+b(-1)+c=0$
$-1+a-b+c=0$
$c=(b-a+1)$
But $\alpha \beta \gamma=\frac{-c}{a}$
$\Rightarrow \quad-1 \times \beta r=\frac{-(b-a+1)}{1}$
$\therefore \quad \beta r=(b-a+1)$
15. (A) Let the present ages of the father and the son be ' x ' years and ' y ' years respectively Five years ago, their ages were $(x-5)$ years and $(y-5)$ years

According to the problem
$(x-5)=7(y-5)$
$\Rightarrow \quad x-5+35-7 y=0$
$\Rightarrow \quad x-7 y+30=0$

$$
\begin{equation*}
\Rightarrow \quad x=7 y-30 \tag{1}
\end{equation*}
$$

Five years later, their ages will be $(x+5)$ years and $(y+5)$ years

According to the problem
$(x+5)=3(y+5)$
$\Rightarrow \quad x+5=3 y+15$
$\Rightarrow \quad x=3 y+15-5$
$\Rightarrow \quad x=3 y+10$
From (1) and (2), we have
$7 y-30=3 y+10$
$\Rightarrow \quad 4 y=40$
$\Rightarrow \quad y=10$
$\Rightarrow \quad x=7 y-30$
$=7(10)-30$
$=40$
$\therefore \quad$ The present ages of the father and the son are 40 years and 10 years respectively
16. (D) Given 63, 65, 67... are in AP.
$\mathrm{a}=63, \mathrm{~d}=65-63=2$
$a_{n}=a+(n-1) d=63+(n-1)(2)=63+2 n$
$-2=61+2 n$
Given $3,10,17$... are in AP
$\mathrm{b}=3 \mathrm{D}=10-3=7$
$b_{n}=b+(n-1) D=3+(n-1) 7=3+7 n-7$
$=7 n-4$
Given $a_{n}=b_{n}$
$\Rightarrow \quad=61+2 n=7 n-4$
$61+4=7 n-2 n$
$5 n=65$
$\mathrm{n}=13$
17. (C) Given $A B C D$ is a rectangle

$$
\therefore \quad \mathrm{BD}=\mathrm{AC}=\sqrt{(11+10)^{2}+(15+5)^{2}}
$$

$=\sqrt{21^{2}+20^{2}}$
$=\sqrt{441+400}$
$=\sqrt{841}$
$=29$
18. (C) In quadrilaterals $A B C D$ and PQRS

$$
\begin{aligned}
& \frac{7}{20}=\frac{z}{16 \frac{2}{3}} \Rightarrow \frac{7}{20}=\frac{3 z}{50} \\
\Rightarrow & z=\frac{35}{6}=5 \frac{5}{6} \text { units }
\end{aligned}
$$

19. (C) Given area of $\triangle A B C=70$ square units

$$
\therefore \frac{1}{2}|\lambda(2 \lambda-6+2 \lambda)-\lambda+1(6-2 \lambda-2-2 \lambda)-4-\lambda(2-2 \lambda-2 \lambda)|=70
$$

$$
|\lambda(4 \lambda-6)-\lambda+1(4)-4-\lambda(2-4 \lambda)|=2 \times 70
$$

$$
\Rightarrow 4 \lambda^{2}-6 \lambda-4 \lambda+4-8+16 \lambda-2 \lambda+4 \lambda^{2}= \pm 140
$$

$$
8 \lambda^{2}+4 \lambda-4= \pm 140
$$

$$
4\left(2 \lambda^{2}+\lambda-1\right)= \pm 140
$$

$$
2 \lambda^{2}+\lambda-1= \pm \frac{140}{4}=35
$$

$$
2 \lambda^{2}+\lambda-1=35
$$

$$
2 \lambda^{2}+\lambda-36=0
$$

$$
2 \lambda^{2}+9 \lambda-8 \lambda-36=0
$$

$$
\lambda(2 \lambda+9)-4(2 \lambda+9)=0
$$

$$
(2 \lambda+9)(\lambda-4)=0
$$

$$
\lambda=4 \in z \text { but } \lambda=\frac{-9}{2} \notin z
$$

(or)
$2 \lambda^{2}+\lambda-1=-35$
$2 \lambda^{2}+\lambda+34=0$
$\Delta=-b^{2}-4 \mathrm{ac}$
$=(1)^{2}-4 \times 2 \times 34$
$=1-272$
$\Delta=-271$
$\Delta<0 \Rightarrow$ No real roots
\therefore One integer satisfies λ value
20. (B) $\angle \mathrm{BAP}=\angle \mathrm{PAO}-35^{\circ}=90^{\circ}-35^{\circ}=55^{\circ}$
$[\because$ A tangent is perpendicular to the radius]

In $\triangle \mathrm{APB}, \mathrm{AP}=\mathrm{PB} \Rightarrow \angle \mathrm{ABP}=\angle \mathrm{BAP}=55^{\circ}$
In $\triangle \mathrm{APB}, 55^{\circ}+55^{\circ}+\angle \mathrm{APB}=180^{\circ}$
$\therefore \quad \angle \mathrm{APB}=180^{\circ}-110^{\circ}=70^{\circ}$

21. (A) Given $\tan (A-B)=\frac{1}{\sqrt{3}}=\tan 30^{\circ}$

$$
\therefore \quad \mathrm{A}-\mathrm{B}=30^{\circ} \longrightarrow \text { (1) }
$$

Given $\cos (\mathrm{A}+\mathrm{B})=0=\cos 90^{\circ}$
$A+B=90^{\circ} \longrightarrow$ (2)
eq. (1) + (2) $\Rightarrow \angle A-\angle B+\angle A+\angle B$
$=30^{\circ}+90^{\circ}$
$2 \angle \mathrm{~A}=120^{\circ}$
$\angle A=60^{\circ}$
$60^{\circ}+\angle B=90^{\circ}$ \qquad
$\angle B=90^{\circ}-60^{\circ}=30^{\circ}$
$\therefore \quad \angle A+2 \angle B=60^{\circ}+2 \times 30^{\circ}$
$=60^{\circ}+60^{\circ}=120^{\circ}$
22. (D) Since, quadrilateral circumscribing a circle then opposite sides subtends supplementary angles at the centre of the circle.
$\therefore \quad \angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
$125^{\circ}+\angle \mathrm{COD}=180^{\circ}$
$\angle C O D=180^{\circ}-125^{\circ}=55^{\circ}$
23. (B) Volume of cuboid = Volume of cylinder
$\Rightarrow \quad l \mathrm{bh}=\pi \mathrm{r}^{2} \mathrm{~h}$
$\Rightarrow \quad r^{2}=\frac{44 \times 30 \times 15 \times 7}{22 \times 28}$
$r=15 \mathrm{~cm}$
Hence radius of the cylinder is equal to 15 cm
24. (A) Diameter of big semicircle
$=(42 m+7 m+7 m) \div 56 m$
Radius of big semicircle $=\frac{56 \mathrm{~m}}{2}=28 \mathrm{~m}$
Length of rectangle
$=126 \mathrm{~m}-28 \mathrm{~m}-28 \mathrm{~m}=70 \mathrm{~m}$
Total area $=\left(\frac{22}{7} \times 28 \mathrm{~m} \times 28 \mathrm{~m}\right)+(70 \mathrm{~m}$
$\times 56 \mathrm{~m}$)
$=2464 \mathrm{~m}^{2}+3920 \mathrm{~m}^{2}$
$=6384 \mathrm{~m}^{2}$
Radius of small semicircle
$=42 \mathrm{~m} \div 2=21 \mathrm{~m}$
Unshaded area $=\left(\frac{22}{7} \times 21 \mathrm{~m} \times 21 \mathrm{~m}\right)+$ ($70 \mathrm{~m} \times 42 \mathrm{~m}$)
$=1386 \mathrm{~m}^{2}+2940 \mathrm{~m}^{2}$
$=4326 \mathrm{~m}^{2}$
$\therefore \quad$ Area of the running track $=6384 \mathrm{~m}^{2}-$ $4326 \mathrm{~m}^{2}=2058 \mathrm{~m}^{2}$
25. (A) Let $A B$ be the height of the building (x $\mathrm{m}), \mathrm{BC}$ be the distance of the observer from the foot of the building and the angle of elevation is 30°.

Then $\tan 30^{\circ}=\frac{x}{100}$
$\Rightarrow \quad x=100 \times \tan 30^{\circ}=\frac{100}{\sqrt{3}} \mathrm{~m} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{100 \times 1.73}{3}$
$=57.66 \mathrm{~m}$
26. (A) Given $\sec \theta+\tan \theta=2$
but $\sec ^{2} \theta-\tan ^{2} \theta=1$
$(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1$
$2(\sec \theta-\tan \theta)=1$
$\sec \theta-\tan \theta=\frac{1}{2}$
$\sec \theta+\tan \theta=2$
$\sec \theta-\tan \theta=\frac{1}{2}$
$2 \tan \theta=2-\frac{1}{2}=\frac{4-1}{2}=\frac{3}{2}$
$\therefore \tan \theta=\frac{3}{2} \times \frac{1}{2}=\frac{3}{4}$
27. (B) Given $\sqrt{7}, 3 \sqrt{7}, 5 \sqrt{7}$ \qquad are in AP

$$
\begin{aligned}
\therefore \quad & a=\sqrt{7} d=3 \sqrt{7}-\sqrt{7}=2 \sqrt{7} \\
& s_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{n}{2}[2 \sqrt{7}+(n-1) 2 \sqrt{7}] \\
& =\frac{n}{2}[2 \sqrt{7}+2 \sqrt{7} n-2 \sqrt{7}] \\
& =\frac{n}{\not 2} \times n \times \not 2 \sqrt{7} \\
s_{n} & =n^{2} \sqrt{7}
\end{aligned}
$$

28. (A) $a=5, b=-2 \sqrt{6} \quad c=-2$

$$
\begin{aligned}
x & =\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
& =\frac{-\left(-2 \sqrt{6} \pm \sqrt{(-2 \sqrt{6})^{2}-4 \times 5 \times-2}\right.}{2(5)}
\end{aligned}
$$

$$
=\frac{2 \sqrt{6} \pm \sqrt{24+40}}{10}
$$

$$
=\frac{2 \sqrt{6} \pm 8}{10}=\frac{2(\sqrt{6} \pm 4)}{10}
$$

$$
=\frac{4+\sqrt{6}}{5}(\mathrm{OR}) \frac{-4+\sqrt{6}}{5}
$$

29. (C) 144) 180 (1

$$
\begin{gathered}
\frac{144}{36)} 144(4 \\
\frac{144}{0}
\end{gathered}
$$

$\therefore \quad$ HCF of 144 and $180=36$
Given $7 m+113=36$
$7 m=36-113$
$7 m=-77$
$m=\frac{-\not ク^{11}}{y_{1}}$
$m=-11$
30. (D) Required polynomial $=\mathrm{k}\left[x^{2}-x(\alpha+\beta)+\right.$ $\alpha \beta$] where k is any real number other than zero.
$=\mathrm{k}\left[x^{2}-x(-3)-10\right]$
$=k\left(x^{2}+3 x-10\right)$
$=x^{2}+3 x-10$ (OR) $2 x^{2}+6 x-20$
$3 x^{2}+9 x-30(\mathrm{OR})\left(\frac{x^{2}}{2}+\frac{3 x}{2}-5\right)$

MATHEMATICS - 2

31. (A, D)

Given P divides the Join of $A B$ in the ratio $1: 2$
$A(-3,2) \quad B(9,5) 1: 2$
$P=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)=\left(\frac{9-6}{1+2}, \frac{5+4}{3}\right)$
$=(1,3)$
Given Q divides the join of $A B$ in the ratio $2: 1$
$\therefore \mathrm{Q}=\left(\frac{9 \times 2-3 \times 1}{3}, \frac{2 \times 5+2 \times 1}{3}\right)$
$=(5,4)$
32. (B, C)

Given $A(5,4) \&(-1,6)$

let B be (x, y)
$A B=B C \quad$ [Given $A B C D$ is a square]
$\sqrt{(x-5)^{2}+(y-4)^{2}}=\sqrt{(x+1)^{2}+(y-6)^{2}}$
squaring on both sides.

$$
\begin{aligned}
& x^{x^{2}}-10 x+25+y^{y}-8 y+16=x^{2}+2 x+1+y^{y}-12 y+36 \\
& -10 x-2 x-8 y+12 y=37-25-16 \\
& -12 x+4 y=-4 \\
& 3 x-y=1 \\
& 3 x-1=y
\end{aligned}
$$

But $A C^{2}=A B^{2}+B C^{2}$
$(5+1)^{2}+(4-6)^{2}=(x-5)^{2}+(y-4)^{2}+(x+1)^{2}$
$+(y-6)^{2}$
$36+4=x^{2}-10 x+25+y^{2}-8 y+16+x^{2}+2 x+$
$1+y^{2}-12 y+36$
$2 x^{2}+2 y^{2}-8 x-20 y+78=40$
$2\left(x^{2}+y^{2}-4 x-10 y+39\right)=40$
$x^{2}+y^{2}-4 x-10 y+39=\frac{40^{20}}{2^{2}}$
$x^{2}+(3 x-1)^{2}-4 x-10(3 x-1)+39=20$
$\therefore x^{2}+9 x^{2}-6 x+1-4 x-30 x+10+39=20$
$10 x^{2}-40 x+30=0$
$10\left(x^{2}-4 x+3\right)=0$
$x^{2}-4 x+3=0$
$x^{2}-3 x-x+3=0$
$x(x-3)-1(x-3)=0$
$(x-3)(x-1)=0$
$x=3$ (or) $x=1$
If $x=1$ then $y=3 x-1=2$
one vertex $=(1,2)$
If $x=3$ then $y=3 x-1=8$
other vertex $=(3,8)$
33. (A, C, D)

Given lines are parallel $\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\frac{\beta^{1}}{\phi_{2}}=\frac{+1}{+2} \neq \frac{+p}{+5}$
$\therefore \mathrm{p} \neq \frac{5}{2}$
\therefore ' p^{\prime} can be real number except $\frac{5}{2}$
$\therefore \mathrm{p}=5$ or -5 (or) 0
34. (A, B, D)

Option A sum of the roots $=\frac{-b}{a}=\frac{-3}{-1}=3$
Option B sum of the roots $=\frac{-b}{a}=\frac{-(-6)}{2}=3$
Option C sum of the roots $=\frac{-b}{a}=\frac{-15}{5}=-3$
Option D sum of the roots $=\frac{-b}{a}=\frac{-(-9)}{3}=\frac{9}{3}=3$
35. (A, C)

Three units from B is $C(5,0)$
let A be (x, y)
Given $A B=A C$
$A B^{2}=A C^{2}$
$(x-2)^{2}+(y-0)^{2}=(x-5)^{2}+(y-0)^{2}$
$x^{y^{\prime}}-4 x+4+y^{y^{\prime}}=x^{\not 又}-10 x+25+y^{y}$
$10 x-4 x=25-4=21$
$6 x=21$
$x=\frac{21^{7}}{6_{2}}=\frac{7}{2}$
$\left(\frac{7}{2}, y\right)$ is 3 units from $(2,0)$
$\therefore \sqrt{\left(2-\frac{7}{2}\right)^{2}+(0-y)^{2}}=3$
$\sqrt{\left(\frac{4-7}{2}\right)^{2}+y^{2}}=3$
Squaring on both sides $\left(\frac{-3}{2}\right)^{2}+y^{2}=9$
$y^{2}=9-\frac{9}{4}=\frac{36-9}{4}$
$y= \pm \sqrt{\frac{27}{4}}= \pm \frac{3 \sqrt{3}}{2}$

REASONING

36. (C) The shapes are moving around the points of the polygon. The circle and arrow are both moving anti-clockwise 2 spaces, and the square is moving 3 spaces in a clockwise direction
37. (D) Except option (D), remaining options are equally portioned.
38. (D) when P is selected that Z should also be selected and when R is selected than T should also be selected. Thus Z and T will be the other two members of the group. The only option that does not have Z and T is the option (D). So the correct answer is (D).
39. (D) More than 17

8 big square +8 small square +2 square in middle $=18$
40. (D)

41. (B)

42. (D) 7155×7156 事 ว $\mathrm{C} \Gamma \Gamma \times$ टटाए
43. (C) $\mathrm{A}=$ East, $\mathrm{B}=$ West, $\mathrm{D}=$ East, $\mathrm{C}=$ West

44. (D) All urban boys play cricket.
45. (C) $\quad(+) \rightarrow$ male
$(-) \rightarrow$ female
$\longleftrightarrow \rightarrow$ wife \& husband
$\downarrow \rightarrow$ son/ daughter
\longrightarrow brother / sister

H is niece to B.

CRITICAL THINKING

46. (C) According to the statement, course of action I \& II follow the given statement.

In the question the output is 1 and 3 4
blocks are in reverse position So, switch Q is fault option(D) is correct.
48. (D)
49. (B)

50. (A) A blended learning approach ensures that the learner is engaged and driving his or her individual learning experience.

